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Abstract—Theoretical and experimental analyses of the dynamic characteristics of a plate heat exchanger
have been carried out. First- and second-order models with dead time are proposed and checked against
results obtained by experimental sinusoidal and pulse testing. It has been found that the dynamic response
of the outlet temperature 6., of the cold stream to variations in the mass flow m, of the hot stream most

closely approaches the second-order transfer function
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1. INTRODUCTION

THE DYNAMIC characteristics of shell and tube heat
exchangers have been the subject of considerable
study and numerous papers [1]. Plate heat exchangers
(PHE) have received much less attention. However,
the latter are of increasing importance due to their
application in the chemical and petrochemical
industries [2].

Over the last three decades several workers have
published papers concerning the dynamic charac-
teristics of different types of PHE in terms of the
system response to changes in inlet flow and tem-
perature. McKnight and Worley [3] demonstrated the
application of feedback control related to high vel-
ocity flow in a PHE whilst Ito and Masubuchi [4]
investigated the dynamics of PHE systems both theo-
retically and experimentally using three different types
of fluid flow pattern. Zaleski and Tejszerski [5]
developed a mathematical model to simulate the tran-
sient operation of two-fluid, multichannel PHEs with
parallel flow arrangements.

No work appears to have been reported yet con-
cerning the dynamics of a countercurrent flow PHE.
The present investigation attempts to meet that need
and consists of an experimental study of the unsteady-
state behaviour of such an exchanger together with
an appropriate theoretical analysis. Two experimental
procedures have been employed using a 21-plate coun-
tercurrent flow PHE with water on both sides of the
plates—one being the well-known frequency response
approach whilst the other consists of a pulse tech-
nique with an analysis based upon the method of
moments [6].

2, EXPERIMENTAL WORK AND
COMPUTATION

The experimental rig and details of the design of
the PHE employed in this work are presented in Figs.

1 and 2, respectively. The relevant steady-state par-
ameters are listed in Table 1.

2.1. Frequency response testing

In this case a sinusoidal disturbance was imposed
upon the flow of the hot stream entering the PHE by
means of a signal generator connected to a pneumatic
control valve (Fig. 1). The response of the temperature
of the cold stream leaving the exchanger (6.,) was
recorded at 4 s intervals and the experimental pro-
gramme was designed to cover a frequency range
between 0.0063 and 0.44 rad s~'. All tempera-
tures were measured by means of chromel-alumel
thermocouples.

The response of 8, to the sinusoidal disturbance in
hot stream flow rate may be represented by

0co(2) = Oco + A4 sin (w1 + ) M

where 4 is the amplitude of the output disturbance,
o the radian frequency of the applied disturbance, ¢
the phase shift between input and output, and 8 the
steady-state cold stream outlet temperature.

Values of 0, 4 and ¢ giving the best fit of equation
(1) to the experimentally measured cold stream outlet
temperature 6, were obtained by a least squares pro-
cedure in which the sum of squares of the errors was
expressed as

SS.E. = 3 (0= [0e+Asin(@;,+d)]}° ()

j=1

where 7 is the total number of observations.
Differentiating equation (2) with respect to 6,,, 4
and ¢, respectively, and equating to zero leads to:

i 0,—A4 i sin (wf;+¢)

0 _i=t j=1
o p 3
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A heat transfer area [m?]
C  specific heat [Jkg='°C™']
H steady-state gain

K,.K,, etc. constants defined in Appendices
A and B

M hold-up mass [kg]

m  mass flow rate [kgs™']

n  number of experimental points

s Laplace operator

t  time coordinate [s]

U overall heat transfer coefficient

Wm=2°C™1]
x  space coordinate [m}].

Greek symbols
{ damping coefficient

N.B.
as, e.g. 0, are steady-state values;

(deviation) variables.

NOMENCLATURE

(a) quantities expressed as, e.g. 0.,(¢) are considered to vary with time whereas those expressed

(b) quantities expressed as, e.g. f,, represent deviation variables, i.e. 0., = 0,,(1) —0,,:
(c) quantities expressed as, e.g. 0, (s) represent the Laplace transforms of the appropriate

0  temperature [°C]

¢ phase lag [deg]

T lime constant [s]

o frequency [rads '].

Subscripts
a lead
¢ cold
d dead
h hot
1 inlet
o outlet

p  process.

n i f;cos (wt,+¢ ) — i 0 i cos (wt;+¢)

A= =

j=1 j=1

ey

n i sin (wt; + ¢) cos (wt, +¢) — ZI sin (wl,+¢) i cos (wt,+d>)

i=1

n i 0;sin (wt;+¢ ) — i 0, i sin (wt, + @)

j=1 J=1 j=1

i—t i=1

Equation (4) is nonlinear and cannot be solved
explicitly for ¢, consequently an open-ended linear
search technique was employed to determine ¢ from
this. From the latter estimate of ¢ corresponding
values of 0., and 4 were determined from equations
(3) and (4), respectively. Typical experimental results
are presented in Fig. 3 together with the fitted sine
wave (equation (1)) using values of ., 4 and ¢ cal-
culated from equations (3) and (4). The calculations
were repeated for all the frequencies employed in the
experimental programme (Table 2). The resulting

Table 1

Flow rate Inlet temperature Outlet temperature

Stream  (kgs™') (°C) (°0)
Cold 0.233 32 46.3
Hot 0.24 72.8 58.1

Plate dimensions: length, 0.33 m; breadth, 0.1 m; heat
transfer area/plate, 0.033 m?; clearance between two plates,
2.57 mm.

n i sin® (wi; +¢) — <i sin (Uﬁ,+¢)>-

€

amplitude ratio (A.R.) and phase shift are presented
as functions of frequency in the form of a Bode
diagram (Fig. 4).

2.2. Pulse testing

Rectangular pulses of differing amplitudes were
introduced into the inlet flow of the hot stream via
the pneumatic control valve. The outlet temperature
of the cold stream was recorded again at 4 s intervals.
A typical pulse disturbance and the corresponding
response of 0, are shown in Fig. 5. The area under
the output disturbance was calculated in each case by
numerical integration. From a comparison of this
with the relevant input pulse were determined values
of A.R. and phase shift by the method of moments.
(The latter consists essentially of writing the Laplace
transform of the distribution function as a power
series in which the coefficients are proportional to the
moments of the distribution. These coefficients are
derived from the area under the output pulse and
provide the corresponding values of A.R. and phase
shift as functions of frequency [6].) A typical Bode
diagram for a pulse disturbance is presented in Fig. 6.
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F1G. 1. Schematic diagram of plate heat exchanger rig.

3. THEORETICAL ANALYSIS

The following assumptions are frequently made in
the modelling of plate heat exchangers [4, 7]:

(a) that heat losses to the surroundings are neg-
ligible and the two end plates of the exchanger serve
as adiabatic walls ;

(b) that heat transfer within the fluid in any
channel is by convection only;

(c) that the fluid will split equally between the par-
allel channels for each stream ;

(d) that the thermal capacity of the plate wall is
negligible ;

(e) that the temperature distributions in all
channels belonging to the same stream are identical ;

(f) that the film coefficient for heat transfer is
dependent principally upon the fluid velocity and is
proportional to an exponential function of the flow
rate;

(g) that the physical properties of the fluid are con-
stant over the range of temperatures employed.

These assumptions are incorporated in the devel-
opment of a lumped parameter model in which the
system may be described by unsteady-state energy
balances across any specific plate as indicated in Fig.
2. Two approaches are possible. The first is to employ
overall balances which assume that the overall heat
transfer coefficient (U) is constant and the second is
to consider that U is a function of the hot stream mass
flow rate m,(¢r) which in turn is a function of time.
Hence in the latter instance U is also a function of
time, i.e. U(z).

For U constant, a balance over the cold stream
gives

(0 =0, + (YO ~Opo (1) = 11,C 2052
5
and over the hot stream
dby, (1)
my, () C(On; — 040 (1) + M. C(6 — 0., (1)) = M, C dr
()]

FIG. 2. Direction of flow in plate heat exchanger.
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Fi1G. 3. Experimental response to sinusoidal disturbance.

(my (1), etc. represent quantities varying with time and
all other are steady-state values and/or are assumed
constant).

By linearizing non-linear terms, the introduction of
deviation variables and the application of the Laplace
transform, equations (5) and (6) may be simplified
and solved simultaneously (Appendix A) to give the
transfer function
@0(52 = ,\H N

Glo) = A (s) 1 +1,8
which relates the outlet temperature of the cold stream
(the controlled variable) to the mass flow rate of the
hot stream (the manipulated variable).

Hence, in this instance G(s) represents a first-order
lag with steady-state gain / and time constant t,,.

If U is a function of time then an energy balance
over the cold stream gives

(M,, = 0.233 kgs™")

Frequency Phase lag

(rad s™") (deg) Gain
0.0063 21.318 1
0.025 25.41 0.691
0.044 43.23 0.612
0.063 65.83 0.557
0.123 74.1 0.523
0.183 102.4 0.414
0.250 109.1 0.416
0.314 145.2 0.270
0.377 163.6 0.220
0.440 179.5 0.150
0.503 183.8 0.134
0.563 196.37 0.067
0.630 0.06

203.1

Experimental results from
frequency response method

0, — 0., Opo (1) — 0.,
s {0 Ot =0

; do_ (1
—m C0.()—04) = M.C ,,a;f) (8)

and for the hot stream

O — b
mp(D)C(On — 0o (£)) — AU(2) { i i""’(’[")

O (1) — 0, do,, (¢
4 Do) = }:th ) )

2 ds

In equations (8) and (9) it is assumed that the
temperature differences (0,;—0..(2)) and (0,.() —0)
are sufficiently close to each other to allow an arith-
metic mean temperature difference to be employed
rather than the more accurate log mean temperature
difference. U(¢) is related to my, (1) by [8]

Table 2. The calculated phase lag and gain for experimental and theoretical data

Experimental results from
method of moments (pulse input)
(M, = 0.1875kg s ")

Phase lag
(deg) Gain
4.49 1
17.81 0.997
31.33 0.992
44 83 0.984
87.30 0.923
132.6 0.873
175.0 0.793
217.6 0.707
258.2 0.633
297.5 0.577
336.2 0.559
373.5 0.496

0.469
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F1G. 4. Bode diagram for experimental data using sinusoidal disturbance.

LOG19

i c
——=a+ — 10a
U0 =t mor (102)
The constants a, b and ¢ have been evaluated from
experimental data presented elsewhere [9], namely

7.06 x 10~°

1 -3
——=12x10 + T;ﬁ;z;jjagg—

10b
70 (10b)

By substituting equation (10a) into equations (8)
and (9), introducing deviation variables, applying the
Laplace transformation and solving simultaneously
(Appendix B)

_O()  H(ts+1)
Tog(s) it 20ts+ 1

G(s) an

Thus if U is considered to be a function of ¢ then
the resulting transfer function G(s) between 6., and
my, consists of a second-order lag with time constant
7, and damping coefficient { combined with a first-
order lead element having a time constant t,.

4. RESULTS AND DISCUSSION

Itis necessary to determine whether the PHE system
in practice approaches either of the two models pro-
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posed above. However, both are unrealistic insofar as
they do not include any dead time. This must be
present in any temperature system. The experimental
results in Figs. 4 and 5 indicate phase lags in excess of
90° and 180° which would be the maximum attainable
with a simple first- or second-order system, respec-
tively. The additional lags exhibited are more likely
to be due to the presence of dead time rather than to
a higher order model. Hence, assuming that the PHE
may be described by a first-order lag with dead time
74 the relevant time constants were determined from
the experimental results using an optimization pro-
cedure with an objective function of the form

i

F= Y ¢, —tan" "{w;7,) — ;1)

i

(12)

Values of 7, and t, were calculated for minimum F
by the use of a multivariable non-linear approach
which is a modified form of Rosenbrock’s opti-
mization method [10]. For the second-order lag/first-
order lead model with dead time, the appropriate
objective function becomes

First-order system with

" — 2ot s
— . 1 Letip e 1
F=y ((b,ﬁ-hm | ipe Han oo
d= 0 ‘)1 Tp

(13)

The time constants in equation (13) for minimum
F were determined with the same non-linear opti-
mization technique. Values of ¢, employed in equa-
tions (12) and (13) were the experimental phase shifts
obtained firstly using the sinusoidal forcing function
and secondly cmploying the pulse technique. Time
constants calculated for each type of model and each
type of disturbance are listed in Table 3. A measurc
of the fit of each model to the experimental results is
given by the respective correlation coefficient, It can
be seen that the latter is much closer to unity for the
lead/lag system with dead time than for the first-order
system. This indicates that the lead/lag model fits the
experimental data better for both sinusoidal and pulse
disturbances. This agrees with the results of Burns ¢r
al. [11] who suggested such a system for modelling
thermal regeneration systems and Gilles {12] who

Table 3. Transfer function parameters for first-order system and lead/lag system with dead time

dead time Lead/lag system with dead time
Process time Dead Lag lime Damping Lead time Dead
constant time constant ratio constant time
1. Experimental results for
frequency response method 16.6 3 4.63 1.64 151 3
2. Experimental results of
method of moments 2.5 10 36 1.1 5.4 10

range of correlation

coefficient for this case

is 0.92-0.97

range of correlation coefficient for this case is
0.98-0.997
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compared a theoretical model of a countercurrent
tubular heat exchanger with experimental resuits.
Examination of Fig. 4 reveals greater discrepancies
in the case of the sinusoidal disturbances between the
frequency response results at certain frequencies for
the models and for the experimental results than
obtained with the pulse changes. This is because in
the case of the sinusoidal forcing function each point
represents a separate experiment with its associated
experimental error whereas all the experimental points
in Fig. 6 are obtained by calculation from the response
of the system to one single pulse. These variations are
reflected also in the values of the process parameters

{Table 3) obtained by the two methods. However, the
parameters calculated assuming the lead/lag system
show much closer agreement (with the exception of
the dead time) than those employing the first-order
lag model. The values of the damping coefficient in
each case are greater than unity indicating the second-
order lag constitutes an overdamped contribution.

5. CONCLUSIONS

The results of experimental and theoretical inves-
tigations concerning the dynamics of a countercurrent
flow plate heat exchanger have shown that the transfer
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function relating the outlet temperature of the cold
stream and the mass flow of the hot stream is best
represented by an overdamped second-order lag
coupled with a first-order lead with dead time, namely

0.(s)  Htgs+1)e
¢ = 0l ,

Toa(s) T;sw + 20T+ 17
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APPENDIX A

Assuming U to be constant, an unsteady-state energy bal-
ance around the cold plate gives

Al 1)
MO0~ Oe () + (N C(0y = Oy (1) = M C )
(Ala)
) do..(n
g~ m 0, () 4+ 1, (D0 — (D0, (1) = M, T
(Alb)

Using a two variable Taylor series expansion about the
unsteady-state for the non-linear term [13]

A. R Knan ¢4 dl

Ay (30,0 |

(O = b im0 — a1 ) A
N hid’

R3S

S (00, (1))
0 |

d

4 (0, (D —0,)

-+ higher order terms  (A2)

(where SS implies calculation at the steady state).

For small perturbations about the steady state higher
order terms can be neglected and equation (A2) approxi-
mates to

m (0, (8 = ol + o (0,00 )+ O (o () —my ).

(A%}
Substituting equation (A3) into equation (Alb) gives
il — 0, () + my (DO a0,
. 10,04
— 1 (O ()= O00) = Oy, (1) — 10, ) = M, ¢ bti't( ), (Ada)
{

Subtracting the steady-state form of equation (Ada) from
equation (Ada) and writing

0= 0,1 —0.
O = Op (81— Oy,

1y = L (F) ==y,

and
di, _d 0. ()0
ar ~ a0
M, 40, - s — O My ~
¢ g =l Mg oAby
me dr n 1,
Putting
M, . hi— Oy, . F
.= . K= and =
m, I, .
b, - -
Ty + O, = K, — K0y,
Applying the Laplace transform
150 (0005 = K (s) = Kol (5
K, _ K, .
NROE ¥;471(,“\'.*11,,(5'} s o (5). {AS)

An unsicady-stale energy balance around the hot plate
gives
3 Ao
1 () C (= O (1)) + 11, C(0g — 0 (1)) = M, C de s
(A6)

This can be treated in the same manner as cquation (Ala)
to yield

) K, Ky -
B (5) = sy — - el (s A7
4 ho(‘) I ‘f"i’hé‘rnh(” 1 4+ T,y w(‘) ( )
where
M O — 0 71
To= e Ky=-0 ™ and K=o
iy I8 ny,

Eliminating 0,,(s) between equations {A3) and (A7) gives

()‘cn(s) o Kitps+(K) — K:K3) L
() Ty (e +t)s+ (1 - KoKy
But
ny, M
L—K.Ky=1—-1-S=0
n. m,
and
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By —Oho ) G|

_K2K3 = mc m, mh - 0
8..(s) K, K
N 51 = = S = AS
<GB m(s) TS+ {te+T) 4TS (A%)
where
Kty TeTh
= and 7, =
T+ Tq Te+Th
APPENDIX B

For U as a function of time, i.e. U(f), an unsteady-state
energy balance around the cold plate gives

m, C#; —0,(0)+AU() {B}n 2m,(l)

N eho(z; —ed} M, Cdewa). (B1)
Substituting equation (10} and putting 4/2 = Z
mC(Oy—0.(0)) + ;}fé’“é%(@m o (1) — B — Ber())
= MCC-@;%. (B2)

The non-linear terms in equation (B2) are linearized using
the Taylor series as in Appendix A. Hence

Zmi(t) _ Zmby G Zebmt™!
anmi(D+e " ami+ec (aml+o)? () —rme)
= Q0+ ROy, (1, (1) —my,) (B3)
where
B Zm, Zcbr_rﬁ\ !
Q_amg-l—c T lamtroT
Similarly
Zmﬁ({)eci o
amtde - Q8+ RO (my (2) —my,) (B4)
Zmi (10, (¢
Z0600h00) _ 0+ QO (1)~ B + Ry () —11,)
amb(f}+c
(B5)
and
Zm(N0.,(6)
i +e 005+ Q(Bco (1) — Oco ) + RO, (1) —~ ).

(B6)

Substituting equations (B3)—(B6) into equation (B2) and
subtracting the steady-state form of equation (B2) leads to
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~ M, C0,, (1) — B0} + ROy (m (1) —my ) + Q0o (1) — O
+ RByo (1, (1) — ) — RO (my (1) — 1y}

db (1)
_Q(eco(z) 6(:0) RS, (mh(t) mh) = M C ar .
Substituting the deviation variables (A4b) and writing
_ MCC Q K R(ehl + eho cl 9(:0)
T met+0 T ml+Q mC+0
dffm(t)

+ 0.,(0) = K3, (1) + Ko (1)

Applying the Laplace transform and rearranging gives

K. K
Ouals) = 1715 00 + T (B7)

S i (s).

The unsteady-state energy balance around the hot plate
leads to

O () — 8

2

d0y, (1)
dt

This can be treated in the same manner as equation (Bl)
1o yield

m () C(By; ~ Byo ()~ AU(D) {6‘“ —§C0(t) +

= M,C

(B8)

Ouo®) = 15 @ + 7o (B9
where
.= M C - 1Y
P m,C+0 T m,C+Q
and

C(By; ~ 0o ) — R(Oyi + Oy —~
m,C+Q

Eliminating ,,(s) between equations (B8) and (B9) leads
to

KE — gci - eco )

Gls) = Bl _ Kstps+ (Ko + KKy )
m(s) TSt +F (T4 T )s+ (1 - KK
H(t,s+1)
ol 2rs+ 1 (BIO)
where
_ Keth
T HI—K.K,)
.- 7T |2
P 1-KK,
and
C — Tc +Ih

21, (1-K5K5)] v

CARACTERISTIQUES DYNAMIQUES D’'UN ECHANGEUR DE CHALEUR A PLAQUES
ET A CONTRECOURANT

Résumé—On analyse théoriquement et expérimentalement les caractéristiques dynamiques d*un échangeur
de chaleur a plaques. Des modéles de premier et de second ordre avec temps mort sont proposés et testés
4 l'aide des résultats expérimentaux obtenus avec des tests sinusoidaux et pulsés. On trouve que la réponse
dynamique de la température de sortie 8., du courant froid vis-a-vis du débit masse m, du courant chaud
est plus proche de la fonction de transfert du second ordre

feo(s)

H(z,s+1)e™¢

in(s)

ot + 2 s+ 1
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DAS DYNAMISCHE VERHALTEN EINES GEGENSTROM-
PLATTENWARMEAUSTAUSCHERS

Zusammenfassung—Das dynamische Verhalten eines Plattenwérmeaustauschers wurde theoretisch und
experimentell untersucht. Modelle erster und zweiter Ordnung mit Totzeit werden vorgeschlagen und mit
MeBergebnissen bei sinus- und pulsformiger Erregung verglichen. Es zeigt sich, daB das dynamische
Verhalten der Austrittstemperatur #,, des kalten Stroms bei Anderung des Massenstroms m, des heiBen
Stroms mit der folgenden Ubertragungsfunktion zweiter Ordnung angenihert werden kann

Ools)  H(zs+he ™
Hiy(s) B TIEXZ-FZf‘[ps-F 1

JUHAMHWYECKHUE XAPAKTEPUCTHKH ITPOTUBOTOYHOI'O IINTACTUHYATOT O
TEIIJIOOBMEHHUKA

Annorauns—IIpoBelicH TEOPETHYECKHH M 3KCIIEPHMEHTAJIbHbIA aHANH3 AMHAMMYECKHX XapakTepUCTHK
MJACTHHYATOro TeI100OMeHHHKA. MO/ NEPBOro M BTOPOro NOPAAKA CO BPEMEHEM 3alla3bIBaHUs
NpejJIoKeHbl M MOATBEPKICHb! PE3yJIbTATAMH JKCIEPHMEHTANBHON CHHYCOMIAILHON M HMITYJIBCHON
npopepky. HaiiieHo, 4TO AMHAMMYECKHH OTKJMK TEMIIEPAaTyphl XOJOJHOTO MOTOKAa Ha BhIXone ., HA
M3MEHEHHE MACCOBOTO TOTOKA m, FOpAYero TedeHus mpubimkaercd K GyHKIMH HEPEHOCA BTOPOIO
nopsaKa

f.(s) Hiz,s +1)e ™
m(s) 1282+ 2T,s+ 1




